
Module 2

Layout – lists, tables, figures,
mathematics

In the first module we covered the basics: how to create a document with a title and
an abstract, chapters and sections, some fine-tuned spacing, and with a few fancy fonts
thrown in.

Today you will be introduced to ways of producing output with more sophisticated
layout: lists, tabstops, tables, figures, mathematics and quotations.

Throughout these notes you will find exercises that are designed to make you more
familiar with new material. Some will be easy, some will be a little more challenging.
There are solutions at the end of the notes, but I encourage you to give all of the
exercises a good try before consulting them. (I recommend you use the book document
class with no optional arguments for these exercises, because different settings may give
you slightly different output.)

The three basic lists

In LATEX there are a number of ways of creating lists. The three most common are the
enumerate, itemize and description environments, and they each have the following
syntax:

\begin{listname}
\item[opt] text
\item[opt] text

...
\item[opt] text

\end{listname}

Here listname is one of enumerate, itemize or description, each \item command
takes an optional argument opt which overrides the default label for that item, and the

c© 2004 Chris Wetherell/GILP, http://wwwmaths.anu.edu.au/~chrisw/LaTeX/

2·1

2·2 Module 2: Layout

text which follows can contain just about anything you like, including blank lines (new
paragraphs) and other nested environments.

The enumerate environment automatically numbers the items (unless an optional
argument is given); the itemize command bullets the items (unless an optional argu-
ment is given); for the description environment there is no default label, but if an
optional argument opt is given for \item then it is typeset in bold font and the text is
indented. Table 2.1 gives the basic layout of each — they were all created with

\begin{listname}
\item First item.
\item[Hello] Second item, with \verb+Hello+ as optional argument.
\item Third item.

\end{listname}

enumerate

1. First.

Hello Second item,
with Hello
as optional
argument.

2. Third item.

itemize

• First item.

Hello Second item,
with Hello
as optional
argument.

• Third item.

description

First item.

Hello Second item,
with Hello as
optional argu-
ment.

Third item.

Table 2.1: Basic lists in LATEX

Exercise 2.1. Typeset the following list using the description environment (remem-
ber that labels are automatically typeset in bold, and recall the commands \TeX and
\LaTeX):

TEX a complicated typesetting system;

LATEX a smooth, easy-to-use, completely intuitive typesetting system based on
TEX that does everything you could ever want with little or no effort;

Word admittedly quite nice in its own way.

One list environment can be nested inside another, by appearing in the text following
an \item. Nested enumerate environments are distinguished by four levels of numbering:

1, 2, 3, . . . a, b, c, . . . i, ii, iii, . . . A, B, C, . . .

Nested itemize environments are distinguished by four levels of bulleting:

• – ∗ ·
There can be at most four nested enumerate and itemize environments each. Nested
description environments are distinguished by increasing indentations. You can also

Module 2: Layout 2·3

nest any combination of list environments, but overall there can be at most six levels of
nesting.

Exercise 2.2. Typeset the following list. You should be able to do it using only the
itemize and enumerate environments, and without optional arguments for the \item
command.

1. First point, with

• A dot point;
• Another dotpoint, although

(a) i. This
– says
– not much

ii. so there
iii.A. point taken

B. indeed
(b) not very interesting
(c) nor insightful

– Some more dots
∗ with subdots
· and a subsubdot
· or two

∗ which really do
– say very little

• Back to this one.

2. And the final point.

In Module 3 we will discuss how to modify the labelling of enumerate, itemize and
description environments. There are two other list making environments: list, which
we will meet in Module 4, and trivlist. The first takes two mandatory arguments
which allow you to completely customise the labelling and spacing of the list; the second
is mostly used for formatting in the definition of new commands and environments.

Tabstops and tables

Often you will want to line your text up in columns. There are two main ways to do
this in LATEX: with the tabbing environment which emulates a typewriter’s tabstops,
and the tabular environment which produces tables.

In the tabbing environment you are responsible for ending each line, except the last
one, with \\ (otherwise the output might go beyond the right margin). Tabstops are
set at any point on a line with \=, and you advance to the next tab stop (which was set
in a previous line) with \>. You can add new tabstops or override previous ones at any
time.

2·4 Module 2: Layout

\begin{tabbing}
If \= raining\\

\> then \= frown\\
\> \> get wet\\
\> otherwise \= smile\\
\> \> stay dry

\end{tabbing}

If raining
then frown

get wet
otherwise smile

stay dry

Notice how the second tabstop which was set in line 2 is overridden by the new tabstop
in line 4. Some other things to note:

• all white space after a \= or \> is ignored, but a single white space before a \=
will affect the position of the tabstop;

• the number of \>’s in a line may be less than but cannot exceed the number of
distinct1 \=’s defined in previous lines;

• \> advances to the next unused tabstop, so this might actually be on the left of
preceding text;

• The commands \=, \’ and \‘ all have special meanings in a tabbing environment,
so they cannot be used for accents; instead use \a=, \a’ and \a‘ ;

• a \kill command at the end of a line (instead of \\) can be used to define tabstops
without producing any output;

• unlike list environments, you cannot nest one tabbing environment inside another.

The next example illustrates some of these points:
\begin{tabbing}
My fianc\a’{e} says I\= shouldn’t abuse\\
tabstops like I seem \>to have here\\
No tabstops here\\
One \=Two \=Three \=Four \kill
1 \>2 \>3 \>4\\
One \>Two \>Three \>Four

\end{tabbing}

My fiancé says Ishouldn’t abuse
tabstops like I seemto have here
No tabstops here
1 2 3 4
One Two Three Four

There are a number of other features available in a tabbing environment — see
Lamport’s LATEX: A Document Preparation System.

Exercise 2.3. Typeset the following using the tabbing environment (you should be
able to do it with at most two tabstops in each line):

On Sunday I went to the market,
and bought a pig.

It never occurred to me
that I should instead

have bought a cow.

1by “distinct” I mean tabstops that haven’t (yet) been overridden by a later tabstop

Module 2: Layout 2·5

The tabular environment takes one mandatory argument which is a string of char-
acters that governs the layout of the table — I’ll call this the layout argument.
The simplest layout argument consists of the letters l, c and r which tell LATEX that
the corresponding column will be left-, centre- or right-justified respectively. Thus
\begin{tabular}{llr} says that there are three columns, the first two are left-justified
and the third is right-justified. Each row is a list of entries separated by an & character
and (with the possible exception of the last row) ended with a \\ command:

\begin{tabular}{rcl}
one & two & three \\
four & five & six \\
seven & eight & nine
\end{tabular}

one two three
four five six

seven eight nine

The spacing of columns and rows is set by default, but we will see in Module 4 how to
alter these.

The \multicolumn command is used to stretch an entry over more than one column,
or to override for a single entry the justification that was set in the layout argument. It
has three mandatory arguments: the first is the number of columns the entry will take
up; the second is a single letter l, c or r which specifies how to typeset the entry; the
third is the entry itself:

\begin{tabular}{rcl}
one & \multicolumn{2}{r}{twothree} \\
\multicolumn{3}{c}{fourfivesix} \\
seven & eight & nine
\end{tabular}

one twothree
fourfivesix

seven eight nine

Care must always be taken that the number of columns expected in a row by & and
\multicolumn commands does not exceed the number specified in the layout argument
(it may be less, though).

Vertical lines are specified with the | character in the layout argument:

\begin{tabular}{||rc|l}
one & two & three \\
four & five & six \\
seven & eight & nine
\end{tabular}

one two three
four five six

seven eight nine

The | character can also appear in the second argument of a \multicolumn command;
this can be used to create partial vertical lines either by adding a new vertical line to a
row, or overriding an existing line from the layout argument:

\begin{tabular}{||rc|l}
one & two & three \\
four & five & \multicolumn{1}{l|}{six} \\
seven & \multicolumn{1}{c}{eight} & nine
\end{tabular}

one two three
four five six

seven eight nine

2·6 Module 2: Layout

(Sometimes LATEX won’t do quite what you expect because some lines take precedence
over others; you may need to do a bit of fiddling around with this.)

Horizontal lines are produced with the \hline command; it should appear at the
beginning of the row above which the line is required. Double lines are produced with
two \hline’s and so on. To draw lines at the bottom of the table, end the last row with
a \\ and put the required number of \hline’s on the next line by themselves:

\begin{tabular}{rcl}
\hline one & two & three \\
\hline\hline four & five & six \\

seven & eight & nine \\
\hline
\end{tabular}

one two three
four five six

seven eight nine

Partial horizontal lines are produced in a similar way with the \cline command. It
takes one mandatory argument which is a range i -j which tells LATEX to put the line
only above columns i to j :

\begin{tabular}{rcl}
\cline{2-3} one & two & three \\
\hline\hline four & five & six \\

seven & eight & nine \\
\cline{1-1}\cline{3-3}
\end{tabular}

one two three
four five six

seven eight nine

You should now be able to. . .

Exercise 2.4. Typeset the following using the tabular environment (recall the com-
mand \$ for $):

Item Price
Aus $ US $

TEX 0.00 0.00
LATEX 0.00 0.00
Word 174.95 89.99

Finally, the @ special character is a very useful command which can be used in the
layout argument. It takes one mandatory argument which is a piece of text that will be
printed in the corresponding position in every row. The default space between columns
is removed from either side of a @ command:

\begin{tabular}{rc@{\$}l@{huh?}}
one & two & three \\
four & five & six \\
seven & eight & nine
\end{tabular}

one two $threehuh?
four five $six huh?

seven eight$nine huh?

This can be overridden for an individual row with the \multicolumn command. The
next exercise gives one example of how useful the @ command can be.

Module 2: Layout 2·7

Exercise 2.5. Use @{.} in the layout argument to typeset the following table:

Name Value
one hundred 100.000
pi 3.14159
cos(2) –0.416147
inches per metre 39.3701

Importing pictures

There are a number of ways of creating simple pictures in LATEX, for example with the
picture environment or the xypic package. The flow diagrams on pages 1·2 and 1·3 of
the Module 1 notes were created with the picture environment. Further information on
these can be found in LATEX: A Document Preparation System or The LATEX Companion.

However, for complex diagrams and images you are better off creating them in an-
other application and then importing them into your document. The types of files that
will be supported depends on the individual installation of the LATEX program you are
using. In my experience you’re safest using .eps (encapsulated postscript) files, or
possibly .bmp (bitmap) files, although the latter can be a bit temperamental. Some
installations will accept some of the other usual suspects: .jpg, .gif, .tif, . . .

The first step is to load the graphics package: type \usepackage{graphics} in the
preamble.

Next use the \includegraphics command where you would like the picture inserted.
This command takes one mandatory argument, the name of the image file, and two
(four?) optional arguments which specify the dimensions:

\includegraphics[88mm,242mm][125mm,266mm]{supernova.eps}

This tells LATEX to import the file supernova.eps, but only leave enough room to include
the rectangle defined by the co-ordinates given: the bottom left corner of the rectangle
is 88mm in from the left and 242mm up from the bottom of the picture’s normal border,
and the top right corner is 125mm in from the left and 266mm up — see Figure 2.1 (in
this case supernova.eps is the size of an A4 page).

∗
88mm

125mm

242mm 266mm

Figure 2.1: Specified dimensions of supernova.eps

2·8 Module 2: Layout

With the \includegraphics command the entire picture will still be printed, but
only enough room for the specified rectangle will be allowed for; the starred variation
\includegraphics* only outputs what’s inside the specified rectangle.

Note that LATEX may complain that it can’t work out the dimensions of an .eps
picture if the optional argument is left out, but it can usually handle a .bmp okay in this
respect. Dimensions can be specified by using any of the units mm, cm, in, pt or pc.

Most DVI viewers will not be able to show imported pictures, so you will need to
convert your file to a postscript file, and then maybe even to a PDF file — refer to
Table 1.1 from Module 1.

The graphics package has an optional argument draft. This tells LATEX not to
import any picture files, but instead draw a rectangular box of the required dimen-
sions which contains the name of that file. This is especially useful if you want to use
DVI viewers (which are generally much more efficient than postscript or PDF view-
ers) but would still like to see the exact position of pictures. It will also save com-
pilation time if there are many pictures in your document. To use this feature type
\usepackage[draft]{graphics} in the preamble.

Exercise 2.6. Download the encapsulated postscript file supernova.eps from

http://wwwmaths.anu.edu.au/~chrisw/LaTeX

and then try to include it in your file. See what happens when you change dimensions
or use the draft option.

Displaying tables and figures

Here we will discuss two rather unfortunately named environments: table and figure.
Warning: they do not produce tables and figures — we’ve already seen ways of doing
this above. Instead they

• create a floating object which LATEX will try to position as best it can;

• allow you to give a numbered caption to an actual table or figure with the \caption
command.

What you put inside the table and figure environments is completely up to you. How-
ever the caption (if provided) will be labelled “Table #:” or “Figure #:” respectively, so
you would usually use them for actual tables or figures. Because the caption is centered
it is usual to begin these environments with the \centering declaration:

\begin{figure}
\centering
\includegraphics[88mm,242mm]
[125mm,266mm]{supernova.eps}

\caption{A supernova}
\end{figure}

Figure 2.2: A supernova

Module 2: Layout 2·9

Note that tables and figures are numbered independently. The \caption command can
contain any text or symbols you like; for long captions you may need to use \\ to break
a line.

LATEX will try to position floating objects to give the neatest looking output — the
main criterion is to avoid large vertical spaces in a page. This means that a table or
figure may not appear exactly where you expect, but it will not appear on a page earlier
than the corresponding position in the source code.

There is an optional argument to both environments which allows you to give LATEX
some hints about where the floating object is allowed to go. The argument is a string
containing one or more of the following characters:

h here, where it appears in the source code;

b at the bottom of a page;

t at the top of a page;

p on a page containing only floating objects;

! try even harder to put it where I want.

The most common option is \begin{table}[ht!] or \begin{figure}[ht!]. There is
a complicated set of rules about which choices have precedence when more than one is
given, and there are ways to gain even more control over positioning, but mostly the
position LATEX chooses for you will be satisfactory.

Exercise 2.7. Using the table environment, centre the table in Exercise 2.4 and give
it the caption “Price of typesetting packages”.

A relatively brief introduction to mathematics

LATEX typesets mathematics beautifully — afterall, this is precisely what its predecessor
TEX was designed to do. The resources available are so vast that we will really only be
able to scratch the surface, but hopefully you will get a feel for the kind of things that
are possible.

The definitive guide to mathematical typesetting is Chapter 8 of The LATEX Com-
panion; it is available from the web at

http://www.ctan.org/tex-archive/info/companion-rev/ch8.pdf

In addition to the array of commands and environments designed for the specific needs of
modern mathematicians, this document catalogues literally hundreds of symbols which
have far broader applications.

Mathematics is entered in maths-mode, a special kind of source code that LATEX
interprets in a different way to normal text. The three most common ways of entering
maths-mode are with the math, displaymath and equation environments; the first

2·10 Module 2: Layout

creates an in-text formula such as E = mc2, the second creates a displayed formula
such as

E = mc2

and the third creates a numbered displayed formula such as

E = mc2 (2.1)

These examples are produced with

\begin{math} E=mc^{2} \end{math}

\begin{displaymath} E=mc^{2} \end{displaymath}

and

\begin{equation} E=mc^{2} \end{equation}

respectively. (There is also a starred variation equation* which supresses the number,
so this is equivalent to displaymath.)

Thankfully, because the math and displaymath environments are used so often, they
each have (two) convenient shortcuts as shown in Table 2.2.

\begin{math} \end{math} \begin{displaymath} \end{displaymath}

\(\) \[\]

$ $ $$ $$

Table 2.2: Shortcuts for maths-mode

Note that the shortcuts you use for \begin{. . . } and \end{. . . } must match each other.
Thus I might type $E=mc^{2}$ and \[E=mc^{2}\] respectively, but I could not use
$E=mc^{2}\) or \begin{displaymath}E=mc^{2}$$ for example.

Standard symbols like =, +, −, /, <, >, (,), [, and] can all be typed normally in
maths-mode; the braces { and } are again produced with \{ and \} respectively.

Some commands, like the special character ^ which produces superscripts, are only
available in maths-mode; others like the \rmfamily declaration can only be used in
text-mode (the opposite of maths-mode which we’ve used to date); some are available
in both, like the ellipsis command \ldots.

Otherwise maths-mode is different from text-mode in three important respects:

• letters (which are not part of a command name) are typeset in italics;

• spacing is quite different to normal text, and in fact all white space in the source
code is ignored;

• blank lines are not allowed.

Module 2: Layout 2·11

You should never use maths-mode as a shortcut for italics or emphasised text, even
though they use the same fonts: compare

\emph{\ldots and they’re off!} . . . and they’re off!

with

$\ldots and they’re off!$. . . andthey′reoff !

Subscripts and superscripts are created with the special characters _ and ^ respec-
tively, and when both are needed they are applied successively (but in no particular
order): a0 = b2 = c3

1 can be produced with $a_{0}=b^{2}=c_{1}^{3}$.

Exercise 2.8. Typeset the in-text formula: a3
i2+1 = b

4+c−1
k

j

These commands can be particularly useful for adding limits to a sum (\sum), prod-
uct (\prod) or integral (\int).

Occasionally you might need to have some plain text appearing in maths-mode, and
this can be achieved with the \mbox command.

Exercise 2.9. Typeset the following displayed formulas:

n∑

i=1

aix
i =

∏

0<j<m

(1− xj)

∫
(2x + 1)dx = x2 + x + constant

There are many commands already defined in LATEX which produce plain looking
text in maths-mode; for example \sin, \cos, \log, \exp and \lim. These are usually
referred to as log-like functions. If a LATEX command exists for such a thing then its
name will be exactly what you expect, as in the examples just mentioned. On the other
hand, if there is no such command then you could easily create your own with \mbox.

Fractions in an in-text formula are often simply written 1/2 ($1/2$). For displayed
formulas you might instead use the \frac command which takes two mandatory argu-
ments, the numerator and the denominator:

\[\frac{1}{2}=\frac{a^{2}+1}{\log c} \]
1
2

=
a2 + 1
log c

Square roots are produced with the \sqrt command on one mandatory argument,
and other roots are possible if an optional argument is also used:

$\sqrt{16}=\sqrt[3]{64}$
√

16 = 3
√

64

2·12 Module 2: Layout

(())

[[]]

\{ { \} }
\langle 〈 \rangle 〉
/ / \backslash \
| | \| ‖
. no output

Table 2.3: Common delimiters in maths-mode

As we have already seen, some objects created in maths-mode are much taller than
normal characters in text-mode, therefore we can’t expect the standard mathematical
delimiters (,), {, } etc. to always be large enough. To overcome this use \left and
\right: compare

(\prod_{n}a_{n}) (
∏
n

an)

with

\left(\prod_{n}a_{n} \right)

(∏
n

an

)

A \left command must always be paired with a \right, but they needn’t be applied to
matching delimiters, or even to what we would normally think of as “left” and “right”
delimiters. For example, something like \left]. . . \right\{ would be perfectly okay —
it’s what’s between the \left and \right which determines how big the] and { would
need to be. Table 2.3 lists some common delimiters that can be used with \left and
\right. Take particular note of . — this is used as a “dummy” delimiter in the event
that only one large symbol is actually wanted:

\[\int_{a}^{b} x^{n-1} =
\left. \frac{x^{n}}{n} \right|_{a}^{b} \]

∫ b

a
xn−1 =

xn

n

∣∣∣∣
b

a

Exercise 2.10. Typeset the following displayed formula:

dy

dx
=

1√
1 + 1

x2

− 4

√
sin

(
ex

x(1 + x)

)
+ 1

All Greek letters are available in maths-mode; the command is simply a \ followed
by the name of that letter:

Module 2: Layout 2·13

δ, λ, μ δ, λ, µ

(In addition there are variations for the six letters epsilon, phi, pi, rho, sigma and theta,
namely \varepsilon, \varphi, \varpi, \varrho, \varsigma and \vartheta.) Capital
letters are produced by starting the letter’s name with a capital, unless the symbol is
the same as a standard Roman letter:

Δ, Λ, M ∆, Λ,M

(That is, there is no \Mu command.)
Table 2.4 lists some other commonly used mathematical symbols, and a few non-

mathematical ones. There are hundreds more — see The LATEX Companion.

× \times ÷ \div ± \pm ∓ \mp
∩ \cap ∪ \cup ≤ \leq ≥ \geq
≈ \approx ∝ \propto ∈ \in 3 \ni
⊂ \subset ⊆ \subseteq ⊃ \supset ⊇ \supseteq
→ \rightarrow ← \leftarrow ⇒ \Rightarrow ⇐ \Leftarrow
↔ \leftrightarrow ⇔ \Leftrightarrow 7→ \mapsto ∞ \infty
` \ell < \Re = \Im ∅ \emptyset
∇ \nabla ∀ \forall ∃ \exists ∂ \partial

. . . \ldots · · · \cdots
... \vdots

. . . \ddots
? \star \ \natural] \sharp [\flat
♥ \heartsuit ♣ \clubsuit ♦ \diamondsuit ♠ \spadesuit

Table 2.4: Some common maths-mode symbols

Any binary relation (such as =, ⊂ or ≥) can be negated with a preceding \not
command: $1 \not< 0$ gives 1 6< 0.

Exercise 2.11. Use Table 2.4 to typeset the following displayed formula:

A 6= πr2 ⇒ ∃δ1 ≤ δ2 ≤ · · · : ∂A

∂r
≈

∞∏

i=1

δi

Accents in maths-mode are not produced with the text-mode commands of Table 1.6,
because they behave a little differently. Table 2.5 shows the available maths-mode
accents. Note that the \wide. . . varieties are intended for arguments which are not a
single character. The commands \imath and \jmath are the maths-mode equivalents of
\i and \j — they remove the dot so accents can be added.

x̂ \hat{x} x̃ \tilde{x} x̂y \widehat{xy} x̃y \widetilde{xy}
x́ \acute{x} x̄ \bar{x} ẋ \dot{x} x̌ \check{x}
x̀ \grave{x} ~x \vec{x} ẍ \ddot{x} x̆ \breve{x}

Table 2.5: Accents in maths-mode

2·14 Module 2: Layout

Arrays and matrices are produced in maths-mode with the array environment. This
is very similar to the text-mode tabular environment, except that all entries are typeset
in maths-mode, \multicolumn’s are not allowed, and there are no lines (so no |’s in the
layout argument, or \hline’s and \cline’s). For example

\[\begin{array}{cr}
a & b \\
0 & -1

\end{array} \]

a b
0 −1

(In the unlikely event you need a table with multicolumns or lines in maths-mode, use
a tabular environment in the argument of an \mbox command.)

Exercise 2.12. Use a log-like function, the \left and \right commands, symbols from
Table 2.4 and an array environment to typeset the following displayed formula:

det

a1 0 · · · 0
0 a2 0
...

. . .
...

0 0 · · · an

= a1a2 · · · an

Multi-line formulas can be typeset with the eqnarray environment — this is also
similar to the tabular environment, except there is no mandatory argument because
there are always exactly three columns which are typeset with the default layout argu-
ment {rcl}:

\begin{eqnarray}
a & = & b + c \\
& \leq & d

\end{eqnarray}

a = b + c (2.2)
≤ d (2.3)

The starred variation eqnarray* suppresses all numbering; to suppress the number on
an individual line, use \nonumber instead:

\begin{eqnarray}
a & = & b + c \nonumber \\
& \leq & d

\end{eqnarray}

a = b + c

≤ d (2.4)

Exercise 2.13. Typeset the following using an eqnarray environment, symbols from
Table 2.4 and accents from Table 2.5 (but don’t worry if the numbering is different in
your output):

c2 = a2 + b2 − 2ab cos θ (2.5)
ȳ → e + f + g + h + i +

j + k + l + m (2.6)
x̃ ∈ Y ∩ Z (2.7)

⊆ Y

Module 2: Layout 2·15

Some maths-mode objects are typeset differently by LATEX depending on whether
they appear in an in-text formula or a displayed formula. For example

∑∞
n=1

1
n and

∞∑

n=1

1
n

are both produced with \sum_{n=1}^{\infty}\frac{1}{n}, between a pair of $’s or
$$’s respectively. LATEX makes these decision for you, but you can reverse them with the

\displaystyle and \textstyle declarations: the in-text formula
∞∑

n=1

1
n

and displayed

formula ∑∞
n=1

1
n

are produced with

$ \displaystyle \sum_{n=1}^{\infty}\frac{1}{n} $

and

$$ \textstyle \sum_{n=1}^{\infty}\frac{1}{n} $$

respectively.

Finally, Table 2.6 shows how to fine-tune horizontal spacing in maths-mode (you can
also use \hspace and \vspace as you would in text-mode). Note that \! is a negative
space.

\! || (negative)
\, || \Ã ||
\: || \quad | |
\; || \qquad | |

Table 2.6: Spaces in maths-mode

Compare

$\int\int f(x,y) dy dz = \sqrt{2}x$
∫ ∫

f(x, y)dydz =
√

2x

and

$\int\!\!\int f(x,y)\,dy\,dz = \sqrt{2}\,x$
∫∫

f(x, y) dy dz =
√

2x

Quotations and so forth

Quotations can be handled by one of two environments: quote and quotation. Both
environments display a passage of text with margins indented on both the left and right
of the page.

2·16 Module 2: Layout

The quote environment is intended for small passages; there is no indenting at the
beginning of a paragraph and blank lines in the source code produce a small vertical
space between lines. The quotation environment is intended for longer passages; it is
typeset in much the same way as paragraphs normally are.

All of the sample source code in these notes is displayed with a quote environment.
A variation on the quotation theme is the verse environment, intended for poetry.

Lines are ended with \\ commands, or with * if LATEX should not break a page at
that point. Blank lines in the source code start a new stanza, and stanzas are separated
in the output by a small vertical space. Any lines which are longer than the allowed
width will continue on the next line with a small indentation.

Exercise 2.14. Typeset the following limerick using the verse environment:

There was a young man from Japan,
Whose limericks never would scan.

When told this was so,
He replied “Yes, I know. . .
But I always like to try to fit as many words into the last line as I possibly

can.”

Solutions to exercises

These are just some of the possible solutions — you may have come up with something
slightly different which is just as valid. Remember that all multiple spaces are ignored,
but it is sometimes helpful to set out your source code in a logical way.

(2.1) \begin{description}
\item[\TeX] a complicated typesetting system;
\item[\LaTeX] a smooth, easy-to-use, completely intuitive

typesetting system based on \TeX\ that does everything
you could ever want with little or no effort;

\item[Word] admittedly quite nice in its own way.
\end{description}

(2.2) \begin{enumerate}
\item First point, with

\begin{itemize}
\item A dot point;
\item Another dotpoint, although
\begin{enumerate}
\item \begin{enumerate}

\item This
\begin{itemize}
\item says

\item not much
\end{itemize}

Module 2: Layout 2·17

\item so there
\item \begin{enumerate}

\item point taken
\item indeed

\end{enumerate}
\end{enumerate}

\item not very interesting
\item nor insightful

\begin{itemize}
\item Some more dots

\begin{itemize}
\item with subdots
\begin{itemize}
\item and a subsubdot
\item or two

\end{itemize}
\item which really do

\end{itemize}
\item say very little

\end{itemize}
\end{enumerate}

\item Back to this one.
\end{itemize}

\item And the final point.
\end{enumerate}

(2.3) \begin{tabbing}
On Sunday \= I went to the market,\\

\> and bought \= a pig.\\
It never occurred \= to me\\

\> that I should instead\\
have bought \> \> a cow.

\end{tabbing}

(2.4) \begin{tabular}{|l|r|r|}
\hline Item & \multicolumn{2}{c|}{Price}\\
\cline{2-3} & Aus \$ & US \$ \\
\hline\hline \TeX & 0.00 & 0.00 \\

\LaTeX & 0.00 & 0.00 \\
Word & 174.95 & 89.99 \\

\hline
\end{tabular}

(2.5) \begin{tabular}{l|r@{.}l}
Name & \multicolumn{2}{c}{Value}\\ \hline
one hundred & 100&000 \\
pi & 3&14159 \\
cos(2) & --0&416147\\
inches per metre & 39&3701

\end{tabular}

2·18 Module 2: Layout

(2.7) \begin{table}
\centering
\begin{tabular}{|l|r|r|}

...
\end{tabular}
\caption{Price of typesetting packages}

\end{table}

(2.8) $a_{i^{2}+1}^{3} = b_{j}^{4+c_{k}^{-1}}$

(2.9) \[\sum_{i=1}^{n} a_{i} x^{i} = \prod_{0<j<m} (1-x^{j}) \]
$$ \int (2x+1) dx = x^{2}+x+\mbox{constant} $$

(2.10) \[\frac{dy}{dx} = \frac{1}{\sqrt{1+\frac{1}{x^{2}}}}
- \sqrt[4]{\sin \left(\frac{e^{x}}{x(1+x)} \right) +1} \]

(2.11) $$ A \not= \pi r^{2} \Rightarrow \exists \delta_{1} \leq
\delta_{2} \leq \cdots : \frac{\partial A}{\partial r}
\approx \prod_{i=1}^{\infty} \delta_{i} $$

(2.12) $$
\det \left[
a_{1} & 0 & \cdots & 0 \\
0 & a_{2} & & 0 \\
\vdots & & \ddots & \vdots\\
0 & 0 & \cdots & a_{n}

\end{array}
\right] = a_{1} a_{2} \cdots a_{n}

$$

(2.13) \begin{eqnarray}
c^{2} & = & a^{2} + b^{2} - 2ab\cos\theta \\
\bar{y} & \rightarrow & e+f+g+h+i+ \nonumber\\

& & j+k+l+m\\
\tilde{x} & \in & Y \cap Z\\

& \subseteq & Y \nonumber
\end{eqnarray}

(2.14) \begin{verse}
There was a young man from Japan,\\
Whose limericks never would scan.

When told this was so,\\
He replied ‘‘Yes, I know\ldots\\
But I always like to try to fit as many words into the last line
as I possibly can.’’

\end{verse}

